
International Journal of Scientific & Engineering Research Volume 3, Issue 8, August-2012 1

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Study of Multi-agent Testing Techniques and
Future Research Direction

Mohammad Mottahir Alam, Asif Irshad Khan, Noor-ul-Qayyum and Abdullah Maresh Ali

Abstract— Multi Agents System (MAS) is seen as the necessary software paradigm for realizing massive open distributed

systems, testing the MAS evolves challenging task, there are several reasons for the MAS testing to be challenging. In this paper

we mainly reported state of art Multiagent based testing techniques and its challenges and listed, some future research direction for
testing Multi Agents System (MAS) are also highlighted in this paper.

Index Terms— Agents, Multi-agent Systems , Unit Testing, Agent-Oriented Software Engineering , Test challenges , Model

Driven Architecture, debugging

——————————  ——————————

1 Introduction
N recent years, agent-based systems have
received considerable attention in both
academics and industry. Agents are seen as the

necessary software paradigm for realizing massive
open distributed systems. A software agent is a
computer program that perform tasks in pursuit of
a goal in a dynamic environment on behalf of
another entity (human or computational), possibly
over an extended period of time, without
continuous direct supervision or control, and
exhibits a significant degree of flexibility and even
creativity in how it seeks to transform goals into
action tasks. A software agent is similar to a robot,
but operates in cyberspace, on a computer
network.
Macal and North [1] believe that ‗‗There is no
universal agreement on the precise definition of
the term ‗agent‘, although definitions tend to agree
on more points than they disagree‘‘. It seems very
complicated to extract agent characteristics from
the literature in a consistent and constant
perspective, because they are utilized in different
ways [2].
Brawshaw [3] states the following definition:
Software agent is a software entity that functions
continuously and autonomously in a particular
environment, which may contain another agents
and processes.
For instance, a number of experts take into
consideration any sort of independent components
(e.g. software, individual, etc.) an agent, while
some others believe that a component‘s behavior

needs to be adaptive in order to be considered an
agent, where the term agent is reserved for
components that can learn through their
environments and change their behaviors
accordingly [1]. Nevertheless, several common
features exist for most agents [5] & [6]—extended
and explained further by [6], [8] and [9].
The paper is organized as follows: sections II cover
Agent and Multiagent concepts and its feature
Section III Software Verification, Testing and
Debugging techniques Section IV describes related
work Section V listed Challenges in testing of
Multi Agents System (MAS) VI some research
directions for testing of Multi Agents System
(MAS) and Section VII conclusion and future work.

2. CONCEPTS OF AGENT AND MULTIAGENT

2.1 Agent

Russell and Norvig [4] define an agent as follows:
―The concept of an agent is meant to be a tool for
system analyzing, not an absolute classification
where entities can be defined as agents or non-
agents.‖ From the literature review, following
characteristics can be defined for a software agent:
• Autonomy: Agents are independent and
autonomous units that are capable of information
processes and exchanging them with other agents
to independently make decisions. They are also
capable of being interactive with other agents and
this may not necessarily influence their autonomy
[6],[10] & [11].
• Heterogeneity: Agents can exist and act as
groups, but they are constructed through a bottom-
up way and combinations of similar autonomous
individuals.

I

————————————————

Mohammad M. Alam is currently working as a Lecturer, Faculty of Engineering,

King Abdul Aziz University, Jeddah, Saudi Arabia, E-mail:

mohammad.mottahir@gmail.com

Asif I. Khan, Noor-ul-Qayyum and Abdullah M. Ali are currently working as

Lecturers, Faculty of Computing and Information technology, King Abdul Aziz

University, Jeddah, Saudi Arabia, and their E-mails are: {aikhan, nqayyum,

ammali}@kau.edu.sa

International Journal of Scientific & Engineering Research, IJSER, Volume 3, Issue 8, August 2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

• Mobility: The mobility of agents is particularly a
practical characteristic for spatial simulations.
Agents can move around the space within a model.
• Adaptation and Learning: Agents are flexible to
be adaptive to produce Complex Adaptive
Systems [12]. Agents can be designed to change
their locations depending on their current state,
following their designed memory [11].
• Activity: Agents have to be active since they
perform independent impacts.

 The following active features can be identified:
 Pro-active (i.e. goal-directed): Agents are often

considered goal-directed elements, following
goals to be accomplished with respect to their
behaviors [5]. For instance, agents in a
geographic environment can be designed to
discover a set of spatial manipulations to
achieve an aim within a certain limitation (e.g.
time), while evacuating a building during an
urgent situation.

 Reactive (i.e. perceptive): Agents can be
developed to have a consciousness of their
surroundings (which may be the physical
world, a user via a graphical user interface, a
collection of other agents, the Internet, or
perhaps all of these combined) and respond in
a timely fashion to changes that occur in it [5].

 Bounded Rationality: In social sciences, a
dominant type of modeling based on rational-
choice paradigm has to exist. Rational-choice
models commonly assume that agents are
perfectly rational optimizers with easy access
to gathered information, foresight, and infinite
analytical capability. These agents are
therefore able to solve deductively complex
mathematical optimization matters.

 Interactive (i.e. communicative): Agents
communicate with other agents (and possibly
humans) via some kind of agent-
communication language (ACL).This is also
called as ―Social ability‖[5].For instance,
agents can enquire other agents and the
environment within a neighborhood,
searching particular attributes, with the ability
to disregard an input which does not match a
desirable threshold.

Therefore, a software agent should be autonomous
or at least semi-autonomous. It can act on behalf of
another entity that is not directly apparent to the
"user" interacting with the agent (similar to the
real-world agents). It may have some level of
"intelligence" in order to deal with a dynamic

environment in which the unexpected is the norm.
Moreover ,a software agent may be "mobile" and
move or be moved around the network, but a
software agent may also be "static" and do all its
work on one host computer on the network,
including accessing resources which are on hosts
other than the host on which the agent is
executing.
Agent-based models consist of several interactive
agents placed within a system. Relationships
between the existing agents are formulated, linking
agents to other agents within a system.
Relationships can be specified in a number of
ways, from simply reactive (i.e. agents only
accomplish events when activated to do so by
external stimulus e.g. behavior of another agent),
to goal-directed (i.e. seeking a particular purpose).
In some cases, the action of predefined agents can
be programmed to occur synchronously (i.e. each
particular agent executes events at each discrete
time point), or asynchronously (i.e. agent reactions
are planned by the actions of other agents and/or
with reference to a predefined time) [13].
In the definition we saw that a software agent is a
piece of software that is able to act autonomously
in particular environment. Figure 1 from
Wooldridge [14] illustrates how agent interacts
with its environment.

 Figure 1- Software agent and its environment
[14]

According to Castle and Crooks [6],
―Environments define the space in which agents
operate, serving to support their interaction with
the environment and other agents. Agents within
an environment may be spatially explicit, meaning
agents have a location in geometrical space,
although the agent itself may be static. For
example, within a building evacuation model
agents would be required to have a specific
location for them to assess their exit strategy.
Conversely, agents within an environment may be
spatially implicit; meaning their location within the
environment is irrelevant. For instance, a model of
a computer network does necessarily require each

International Journal of Scientific & Engineering Research, IJSER, Volume 3, Issue 8, August 2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

computer to know the physical location of other
computers within the network.‖ Therefore,
software environments include operating systems,
computer applications, databases, networks, and
virtual domains.

2.2 MULTI-AGENT SYSTEM (MAS)

Agents are seen as the necessary software
paradigm for realizing massive open distributed
systems. But, as the complexity of software has
increased, it has become harder to handle the
complexity with single agent frameworks. Since
the mid nineties, multi-agent systems have
received widespread attention in many fields of
science and engineering.

 A multi-agent system can be
characterized by a group of interacting, self-
directed agents having varied sensory and motor
abilities. Thus, a multi-agent system (MAS) is a
computational environment in which individual
software agents interact with each other, in a
cooperative or competitive manner, and sometimes
autonomously pursuing their individual goals,
accessing resources and services of the
environment, and occasionally producing results
for the entities that initiated those software agents
[22].

There are some works which address the
problem of building confidence in the owners and
users of agent-based systems with particulars
techniques which we are going to describe in this
work. Some of them are based on testing and
monitoring, others are based on debugging, and
others on simulation.

Moreover these works are still at very
early stage. Actually formal methodologies
provide validation tests that are applicable in very
few and quite irrelevant cases though. The main
reason of this lack applicability is that activities,
which should assure that the program performs
satisfactorily, are very challenging and expensive
since it is quite complicated to automate them [2].

Agent Communication: Agent communication can
be defined as the exchange of information between
software agents. An agent needs some agent
communication language to be able cooperate with
other agents and react to its environment.
Communication between agents encourages
autonomy and also encourages the existence of

societies of agents that are able to provide
solutions to more complex problems.

 Communication may be direct with one
another or through an interpreter, communicate is
usually took place through a language, Knowledge
Query and Manipulation Language (KQML) is the
most widely used agent communication language
(ACL) [27]. Shared vocabularies of words are used
in communication which is also known as
Ontology. To ensure that two agents are
communicating in the same language KQML uses
ontologies.

Agent Cooperation: Co-operation among agents
allows a community of specialized agents to pool
their capabilities to solve large problems [15].
In multi-agent concepts side, there are various
definitions for cooperation. (Gustasfon & Matson,
2003) defines cooperation as:
 ―The multi-agents working together for doing
something that creates a progressive result such
increasing performance or saving time‖ (Gustasfon
& Matson, 2003).
(Changhong et al., 2002) definition of agent
cooperation is as follows:
 ―One autonomous agent adopts another
autonomous agent‘s goal. Its hypothesis is that
cooperation only occurs between the agents, which
have the ability of rejecting or accepting the
cooperation‖ (Changhong et al., 2002).

Negotiation in Multi-Agents The multi-agent
cooperation was defined in third definition as ―The
multi-agents working together for doing
something‖ (Gustasfon & Matson, 2003). The vital
member in multi-agents technology is group
working; which needs a communication and
negotiation between agents. Negotiation means ―A
key form of interaction that enables groups of
agents to arrive at a mutual agreement regarding
some belief, goal or plan‖ (Beer et al., 1998).

The negotiation between agents is
implemented by different types, such as
argumentation, protocols in the style of the
contract net and auctions. The selection of
negotiation type depends on the environment of
problem, which has to be solved (D‘Inverno et al.,
1997).

 Coalition/Cooperation in Multi-Agent

In ―Cooperation structure‖ section, all types of the
cooperation structures CATC, CCTA,CCTC and

International Journal of Scientific & Engineering Research, IJSER, Volume 3, Issue 8, August 2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

CGE include agent coalition; so the agent coalition
is the most important part in multi-agent
cooperation systems. Operations of coalition have
to configure legacy or foreign systems (Allsoop et
al., 2002).

Agent coalition is special type of agents,
which concentrate on the coordination and the
communication among agents to collaboratively
accomplish tasks. For an example, the stations
work together as form of agent coalition. In this
example, agents in this system are owners of
power stations, groups of customers and
coordinators. The objective of the Multiagent
system is to derive effective with gainful coalitions
under the fair play practice subject to the
constraints also requirements of power generation
and transmission.

The modern industries needed a more
efficient approach to facilitate a stable searching for
new partners, coalition formation and a fair system
used to identify the contribution from each
participant (Yen et al., 1998). Some game theory
models can be borrowed to improve the theoretical
foundation for the multi-agent system.

The recent coalition operations are
effected by many factors, such as data overload,
starvation of information, labour-intensive
information collection and coordination. The
agent-based computing presents a new promising
approach to effective coalition operations; since
this approach embraces the coalition
environment‘s open, heterogeneous diverse
dispersed nature (Allsopp et al., 2002).

Coordination relationship may be positive
as well as negative. Positive coordination
relationship benefits both the agent by working
together to reach to their assigned goals for
example suppose agents are coordinating to
switched on a machine if they found machine is off
any one agent can switch on the machine to
accomplished the common goal (to switched on the
machine) , while negative coordination
relationship agents cannot complete their assigned
task at the same time, for example agents are
coordinating to print some assigned job, both of
them issue print command but one agent
command will be accepted others put in the printer
queue.

3. Software Verification, Testing and
Debugging

Testing is an activity in which a system or
component is executed under specified conditions,

the results are observed or recorded and compared
against specifications or expected results, and an
evaluation is made of some aspect of the system or
component.
A test is a set of one or more test cases. The main
aim of a test is to find faults.

An error is a mistake made by the developer
misunderstanding something. A fault is an error in
a program. An error may lead to one or more
faults. When a fault is executed an execution error
may occur. An execution error, error for short, is
any result or behavior that is different from what
has been specified or is expected by the user.

The observation of an execution error is a failure.
Notice that errors may go on unnoticed and hence
may play serious havoc with the remaining
computation and use of the results of this
computation. The longer the period of unobserved
operation, the larger is the probability of serious
damage due to errors that is due to unobserved
failures.

There are two kinds of tests: static verification and
dynamic validation. The former is based on code
inspection or ―walk through‖, symbolic execution,
and symbolic verification. The later generates test
data and execute the program. Figure 2 shows
where static verification and dynamic validation
tests occur during the software life cycle [8].

Figure 2 - Kinds of Testing [8]

There are several strategies for testing software
and the goal of this survey is not to explain all of
them. However, we will describe the main
strategies found in literature ([8], [23]) for testing
software which are related to some of the works
presented in the fourth section. Here they are:

International Journal of Scientific & Engineering Research, IJSER, Volume 3, Issue 8, August 2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

 Black-box testing: also know as functional
testing or specification-based testing. Testing
without reference to the internal structure of
the component or system.

 White-box testing: testing based on an analysis
of the internal structure of the component or
system. Test cases1 are derived from the code
e.g. testing paths.

 Progressive testing: it is based on testing new
code to determine whether it contains faults.

 Regressive testing: process of testing a
program to determine whether a change has
introduced faults (regressions) in the
unchanged code. It is based on re-execution of
some/all of the tests developed for a specific
testing activity.

 Performance testing: verify that all worst case
performance targets have been met, and that
any best-case performance targets have been
met.

There are several types of tests. The most
frequently performed are the unit test and
integration test. A unit test performs the tests
required to provide the desired coverage for a
given unit, typically a method, function or class. A
unit test is white-box testing oriented and may be
performed in parallel with regard to other units.
An integration test provides testing across units or
subsystems. The test cases are used to provide the
desired coverage for the system as a whole. It tests
subsystem connectivity.
There are several strategies for implementing
integration test:

(i) bottom-up, which tests each unit and

component at lowest level of system
hierarchy, then components that call these
and so on;

(ii) top-down, which tests top component and
then all components called by this and so
on;

(iii) big-bang, which integrates all components
together; and

(iv) Sandwich, which combines bottom-up
with top-down approach.

The techniques and strategies presented in this
section will appear in the approaches in the
following section.

The main idea is to relate them with the works
presented and classify them according to each
strategy or technique.

4. Literature Review in the field of MAS
Testing

In the Agent-Oriented Software Engineering
(AOSE) methodologies, research works are mainly
focused on the disciplined approaches to analyze,
design and implement MASs [18]. Only a few of
these methodologies define an explicit verification
process. MaSE [19] and MASCommonKADs [20]
methodologies propose a verification phase based
on model checking to support automatic
verification of inter-agent communications.

Now, with the increasing demand of agent-based
systems, there is a growing need for the quality
and correctness of the software-agents made.
Unfortunately, testing remains a challenging
activity where a systematic approach to testing
multi-agent system is still missing.

Desire [21] proposes a verification phase based on
mathematical proofs - the purpose of this process
is to prove that, under a certain set of assumptions,
a system adheres to a certain set of properties.
Only some iterative methodologies propose
incremental testing processes with supporting
tools. These include: PASSI/Agile PASSI [22],
AGILE [23].

[19] Proposed a new approach based on a simple
testing framework called PASSI (Process for Agent
Societies Specification and Implementation) which
lets developers build a test suite effortlessly in a
cheap and incremental way. It provides a unifying
application model and a partial implementation of
it, trying to support the developer in creating and
executing tests in a uniform and automatic way.

They aim to reduce time and cost when developing
MAS, guarantee quality assurance, and provide
automatic activities which should assure that the
program performs satisfactorily.

The PASSI framework is built on top of JADE and
it allows developers to create tests at different
levels (hierarchical approach) simply acting as a
support for running tests and visualizing results.
The framework is based on a two-level model as
shown in figure 3. At the first level they identify
the agent as an atomic entity. In order to check the
correctness of the activities carried out by a single
agent a number of different cases must be tested.
This leads us to the second level where they
identify specific agent tasks. There is a ―test-agent‖
which performs the set of tests related to all the

International Journal of Scientific & Engineering Research, IJSER, Volume 3, Issue 8, August 2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

capabilities of a given agent. Tests on specific tasks,
on the other hand, will be referred to as ―task-test‖.
In order to reflect the two-level model, the
following classes are provided:

 Test class, representing the test of a specific

task of an agent.

 TestGroup class, representing the group of all
the agent tests. It is basically a collection of
Test objects. The list of task-tests to be
included in a TestGroup is described in an
XML file.

In general, all test methods in a TestGroup share
the same fixture, which consists of objects and
anything else needed to perform the test.

A Test or a TestGroup is executed by a tester agent
i.e. an agent that extends the TesterAgent class.
Each tester agent has a behavior, an extension of
the TestGroupExecutor class, which is in charge of
getting the group of tests to be executed and for

each test adds the corresponding behavior to the
tester agent scheduler.

The list of all the agent-tests that can be tested and
the list of task-tests to be performed for each of
them are described by means of XML files. There is
a single main XML file that contains the list of all
the agent-tests of the application and one XML file
for each agent-test that contains the list of task-
tests to be executed. Developing an agent-test
means therefore developing a new tester agent in
charge of the group of task-tests described in the
associated xml file.

Finally the utility class Logger provides methods
to create logs. By extending this class it is possible
to create sophisticated loggers in order to provide
reported information in more suitable formats. To
date, reported information can be displayed in a
graphical user interface (where very essential
information is shown), written to a text file, printed
to the standard error or organized into web pages.

Figure 3 - PASSI -Test Framework main classes [19]

A single test and group of tests can be executed by

simply launching the corresponding tester agent. A
more convenient way of performing them is by
means of the TestSuiteAgent, an agent that
provides a valuable graphical interface to run tests.
When a test or a group of tests are launched the

TestSuiteAgent creates the proper tester agent and
delegates to it the execution of the tests. During the
testing activity the tester agent will send FIPA ACL
messages to the TestSuiteAgent, informing it about
the test outcomes and giving eventually detailed
information concerning the causes of failure.

International Journal of Scientific & Engineering Research, IJSER, Volume 3, Issue 8, August 2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

The TestSuiteAgent, as stated before, provides a
graphical interface to run tests, by means of which
it is possible to:
 (i) View information related to the agent-tests and
all the task-tests they include;
(ii) Select and load the tests to be executed;
(iii) Execute all agent-tests of the list in sequence
and produce a final report indicating, for each
agent-test, the number of task-tests which have
passed and failed and the corresponding causes of
failure.

The author [23] proposes an approach called
MadKit which focuses on a specific kind of testing
called the Record/Replay mechanism [24] used in
regression testing. The Record/Replay mechanism
is a test performed during the execution of the
system either in simulation or in production. It is
realized through system inspection. The record
phase records actions in the system (memory,
environment, data update, messages, etc.).

When an error occurs in the system,
designers have a system that they can play and
replay until they found the error and fixed it. They
also compare model checking and testing, and say
that contrarily to the former, testing checks that
agents behave properly rather than agents are
proved correct. In their approach, the
Record/Replay mechanism is coupled to testing
via post-mortem analysis. It uses the events and
data stored during the record phase and checks
properties without re-executing the system.
The author [25] in his research proposes an
approach for integration tests in open multi-agent
systems. This approach supports the creation of
test cases based on the information provided by
the definition of system rules. They propose to use
XMLaw, which is a language for the specification
of agents‘ interactions‘ regulation in open multi-
agent systems. In open multi-agent systems, agents
must obey social conventions in order to maintain
predictable integration.

Usually, these social conventions are hard
coded, leading to unsuitable systems. A solution to
hard coded conventions is separate the system‘s
social convention into a separate module insuring
agents compliance. This technique is called law
enforcement.

In [26],a framework for agent oriented testing
based on the V-Model is proposed .The V-model
is extended by incorporating the characteristics of
the agent perspective approach.

The authors [27] in his paper propose an approach
to verify the correctness of execution scenario in a
multi-agent system. In this approach, scenarios are
specified by Protocol Diagrams in AUML (Agent
Unified Modeling Language) .

 The pre and post conditions of the
scenarios are formalized and an extension property
class in JPF (Java PathFinder) model checker is
defined to verify if the execution of scenarios
satisfies their constraints. This approach has been
illustrated by using a well-known scenario of a
book trading multi-agent system.

The author [28] in his paper described the ongoing
works to develop a systems modeling approach to
allow design-time system models to be reused by
an autonomous system at runtime. He identified
the properties associated with the engineering of
autonomous systems that differentiate them from
other types of complex system.

A framework to support the verification
and validation of aspects of autonomous systems
at runtime is then presented which uses the
principles of MDA (Model Driven Architecture) to
underpin it, and discussed the rationale behind its
structure., and we develop a specific aspect of this
framework – a run-time Computation Independent
Model (CIM), using a language from the
automated planning domain, the Planning Domain
Definition Language (PDDL).

The author [29] proposed a testing model
for multi-agent systems which classifies the test
techniques into the five dynamic test levels: unit
integration test, agent acceptance test, agent
integration test, system test and user acceptance
test. The test processes that proposed by the
International software testing qualification board
(ISTQB) are extended and modified to address the
properties of a comprehensive test process in
AOSE.

The proposed process is divided by
introducing four sub-processes: Test planning and
control, Test analysis and design, Test
implementation and execution and Test evaluation
exit criteria and reporting. These sub-processes
contain specific activities, metrics and tangible
input and also output artifacts. The preferred
agent-oriented test methods are employed in
designing the test cases and in executing the tests
sub-processes.
The authors [30] presented their studies of formal
verification of multi-agent system using model
checking approach. They have utilized model
checking tool in order to execute the formal

International Journal of Scientific & Engineering Research, IJSER, Volume 3, Issue 8, August 2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

verification procedures based on a particular basic
theory to verify certain kind of properties of
requirement specifications.

We show an example of how model
checking tool could support the verification of
Universiti Teknologi Malaysia (UTM) multi agent
online application system and conclude that the
propose model checking approach will benefit
multi agent system.
They extended the generic model checking
procedures i.e. specification, modeling, and
verification by proposing model checking cycle
(MCC) in which model checking procedures are
done in cycle so that the informal and formal
requirements specifications and system modeling
can be further improved and refined as the
verification is performed. Figure 4 below shows
the extended model checking processes cycle
adapted from quality management of industrial
practice [6].

The model checking is implemented by
executing multiple stages of processes organized
into four phases of MCC processes flow as shown
in Figure 4. The first phase is the informal
specification and modeling of system
requirements. Next, the second phase is the formal
specification of properties and modeling of system.

The output of the informal and formal
specification and modeling are used to execute
automated verification using model checking tools
in the third phase of MCC. Finally, the output of
the verification phase is analyzed in the fourth
phase and the analysis will be used to improve the
next implementation cycle.

 Figure 4- Proposed model checking cycle (MCC)

5. Challenges in testing of MAS

Testing the MAS is a challenging task. There are
several reasons for the multi-agent system testing
to be challenging:

 In multi-agent software, several distributed

processes run autonomously and concurrently;
which makes MAS to be complex and it‘s
testing very challenging.

 Amount of data, since systems can be made up
by thousands of agents, each owning its own
data;

 Irreproducibility effect, since we can‘t ensure
that two executions of the systems will lead to
the same state, even if the same input is used.
As a consequence, looking for a particular
error can be difficult if it is impossible to
reproduce it each time [22].

 They are also non-deterministic, since it is not
possible to determine a priori all interactions
of an agent during its execution.

 Agents communicate primarily through
message passing instead of method invocation,
so existing object-oriented testing approaches
are not directly applicable.

 Agents are autonomous and cooperate with
other agents who implies that they may run
correctly by themselves but incorrectly in a
community or vice versa.

Agents' characteristics such as autonomous
behavior, pro-activity, mutual relationships of
these agents and relationships with the
environment, make it difficult to verify the quality
and correctness of MAS. Therefore, there is a need
for new testing methods dealing with their specific
features. The methods need to be effective and
adequate to evaluate agent's characteristics such as
autonomous behaviors, pro-activity, reactivity etc.
There is an emerging need for detailed guidelines
for the processes to follow during the testing of
multi-agent systems. This is a very essential step
towards the adoption of Agent-Oriented Software
Engineering (AOSE) methodology by industry.

6. Future research direction for testing
of MAS

 There can be problems of bottlenecks in the
multi-agent system despite its distributed

International Journal of Scientific & Engineering Research, IJSER, Volume 3, Issue 8, August 2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

character, as there are often high-load hubs
and central points that can slow down the
entire system. This area can be one of the
researches.

 Study the scope of stress testing on a multi-

agent system, in order to determine behavior

and stability in the case of mass collapse of a

great number of agents. This is because, even

in such a situation, the multi-agent system

should remain stable, without substantial

impact on its performance and its global

behavior

 The other research study can focus on the

proposing a new testing methodology to

support agent-oriented software engineering

(AOSE) that will be having advantage over the

existing ones.

7. Conclusion and Future work.

Testing of multi-agent systems poses more
complex problems than testing of ‗‗traditional‘‘
computer systems. Emergent properties and
behaviors of multi-agent systems are their
inseparable traits that add to the system such
characteristics that no single one of their parts
possess.

Although there are a number of tools and
approaches designed for testing various kinds of
problems in multi-agent systems, we are still
lacking a consistent method for multi-agent
testing.

In this paper we mainly reported state of
art Multiagent based testing techniques and its
challenges and listed, some future research
direction for testing Multi Agents System (MAS)
are also highlighted in this paper.

Our future work will deal with testing of
multi-agents systems with a special focus on
autonomous system. We will also focus on testing
different bottle-neck scenarios which might have
an impact on the multi-agent systems.

REFERENCES

[1] Macal CM, North MJ (2006) Tutorial on agent-
based modeling and simulation part 2: how to model

with agents. In: Perrone LF, Wieland FP, Liu J,

Lawson BG, Nicol DM, Fujimoto RM (eds)

Proceedings of the 38th conference on winter

simulation, Winter Simulation Conference,

Monterey, California, pp 73–83.

[2]Bonabeau E (2002) Agent-based modeling:

methods and techniques for simulating human

systems. Proc Natl Acad Sci U S A 99(90003):7280–
7287

[3] Bradshaw. 1997. Software Agents. MIT Press,

Cambridge, MA, USA.

[4]Russell S, Norvig P (2009) Artificial intelligence:

a modern approach, 3rd edn. Prentice Hall,

Englewood Cliffs

[5] Wooldridge MJ, Jennings NR (1995) Intelligent

agents: theory and practice. Knowl Eng Rev

10(2):115–152

[6] Castle CJ, Crooks AT (2006) Principles and

concepts of agent-based modelling for developing

geospatial simulations, centre for advanced spatial

analysis (UCL). UCL (University College London),

London

[7] Franklin S, Graesser A (1996) Is it an agent, or

just a program?: a taxonomy for autonomous agents.

In: Müller JP, Wooldridge MJ, Jennings NR (eds)

Proceedings of the third international workshop on

agent theories, architectures, and languages, Springer,
pp 21–35

[8] Macal CM, North MJ (2005) Tutorial on agent-

based modeling and simulation. In: Kuhl ME,Steiger

NM, Armstrong FB, Joines JA (eds) Proceedings of

the 37th conference on winter simulation, Winter

Simulation Conference, Orlando, Florida, pp 2–15.

[9] Epstein JM (2007) Agent-based computational

models and generative social science, in generative

social science studies in agent-based computational

modeling. Princeton University Press, Princeton, pp
41–60.

[10] Benenson I, Torrens PM (2004) Geosimulation:

automata-based modeling of urban

phenomena.Wiley, New York.

 [11] Smith MJD, Goodchild MF, Longley PA (2007)

Geospatial analysis: a comprehensive guide to

principles, techniques and software tools, 2nd edn.

Troubador Publishing Ltd, Kibworth.

[12]Holland J (1996) Hidden order: how adaptation

builds complexity, 1st edn. Addison Wesley

Longman, Redwood City.

International Journal of Scientific & Engineering Research, IJSER, Volume 3, Issue 8, August 2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

[13] Showalter P, Lu Y (2009) Geospatial techniques

in Urban hazard and disaster analysis. Springer,The

Netherlands.

[14] Wooldridge. 1998. Agent-based computing.

Interoperable Communication Networks.vol. 1, no. 1.
pp. 71-97.

[15] Andreas S. J. 2010. Multi-Agent Systems: An

Investigation of the Advantages of Making

Organizations Explicit. MSc Thesis, Department of

Informatics and Mathematical Modeling, Technical

University of Denmark.

[16] Gustasfon, D. A.; & Matson, E. (2003).

Taxonomy of Cooperative Robotic Systems,

Proceeding of 2003 IEEE International Conference

on Systems, Man and Cybernetics, pp.1141-1146,

ISBN:0-7803-7952-7, Crystal City Hyatt Regency,
October 2003, IEEE, Washington DC.

[17] Changhong, L.; Minqiang, L.; & Jisong, K.;

(2002). Cooperation Structure of Multi-agent and

Algorithms, Proceedings of the 2002 IEEE

International Conference on Artificial Intelligence

Systems, pp. 303–307, ISBN:0-7695-1733-1,

September 2002, IEEE, Divnomorskoe , Russia.

[18] Cernuzzi, L., Cossentino, M., Zambonelli, F.

Process Models for Agent-based Development,
Journal of Engineering Applications of Artificial

Intelligence, 18(2), 2005.

[19] DeLoach, S., Wood, M. and Sparkman, C.

Multiagent Systems Engineering. International

Journal of Software Engineering and Knowledge

Engineering, vol. 11, No. 3, pp. 231-258, 2001.

[20] Iglesias, C., Garijo, M., Gonzalez, J.C., Velasco,

J.R. Analysis and Design of Multiagent Systems

using MAS-CommonKADS.Springer, LNCS 1365,

pp. 312-328, 1997.

[21] Jonker, C.M., and Treur, J. Compositional

Verification of Multi-Agent Systems: a Formal

Analysis of Pro-activeness and Reactiveness. Proc. of

COMPOS’97, Springer, LNCS 1536,1998.

[22] Caire, G., Cossentino, M., Negri, A., Poggi, A.,

and Turci, P., Multi-agent systems implementation

and testing. In Proc. of From Agent Theory to Agent

Implementation - Fourth International Symposium

(AT2AI-4), 2004.

 [23] Ronsse, M., Bosschere, K. D., Christiaens, M.,

Kergommeaux, J. C., and Kranzlmüller,D.,

Record/replay for nondeterministic program

executions. Communications of the ACM, 46(9),

September 2003.

[24] Huget, M.-P.; Demazeau, Y.; Evaluating

multiagent systems: a record/replay

approach.Intelligent Agent Technology, 2004. (IAT
2004). Proceedings.

IEEE/WIC/ACM International Conference on 2004 .

[25] Rodrigues, L.F; Carvalho G. R.; Paes, R. B.;

Lucena, C.J.P.; Towards an Integration Test

Architecture for Open MAS (SEAS), SBES, 2005.

[26]M Moreno, J Pavón, and A Rosete1;Testing in

Agent Oriented Methodologies, Lecture Notes in

Computer Science, 2009, Volume 5518.

[27]Thanh-Binh Trinh, Quang-Thap Pham, Ninh-

Thuan Truong, and Viet-Ha Nguyen; A Runtime
Approach to Verify Scenario in Multi-Agent

Systems, 2010 Second International Conference on

Knowledge and Systems Engineering.

[28]Glenn Callow, Graham Watson, Roy Kalawsky;

System Modelling for Run-time Verification and

Validation of Autonomous Systems, 2010 5th

International Conference on System of Systems

Engineering.

[29] Saeed Zamani, Ramin Nassiri, Sam Jabbehdari;
A New Test Process in Agent-oriented Software

Engineering, International Journal of Advancements

in Computing Technology Volume 3, Number 7,

August 2011.

[30] Najwa Abu Bakar, Ali Selamat; Analyzing

Model Checking Approach for Multi Agent System

Verification, 2011, 5th Malaysian Conference in

Software Engineering (MySEC).

[31]Cu D. Nguyen, Anna Perini, Carole Bernon, Juan

Pavón and John Thangarajah;
Testing in Multi-Agent Systems, Agent-Oriented

Software Engineering X , Lecture Notes in Computer

Science, 2011, Volume 6038/2011.

[32]Tomas Salamon; A Three-Layer Approach to

Testing of Multi-agent Systems, Information Systems

Development ,2010, 393-401, DOI:

10.1007/b137171_41.

Authors Bibliography

Mohammad Mottahir Alam has around six

years of experience working as Software

http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/?Author=Cu+D.+Nguyen
http://www.springerlink.com/content/?Author=Anna+Perini
http://www.springerlink.com/content/?Author=Carole+Bernon
http://www.springerlink.com/content/?Author=Juan+Pav%c3%b3n
http://www.springerlink.com/content/?Author=Juan+Pav%c3%b3n
http://www.springerlink.com/content/?Author=Juan+Pav%c3%b3n
http://www.springerlink.com/content/?Author=John+Thangarajah
http://www.springerlink.com/content/w38l1t001314p51x/
http://www.springerlink.com/content/978-3-642-19207-4/
http://www.springerlink.com/content/978-3-642-19207-4/
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/0302-9743/
http://www.springerlink.com/content/?Author=Tomas+Salamon
http://www.springerlink.com/content/x2232302080048ug/
http://www.springerlink.com/content/x2232302080048ug/
http://www.springerlink.com/content/978-0-387-84809-9/
http://www.springerlink.com/content/978-0-387-84809-9/
http://www.springerlink.com/content/978-0-387-84809-9/

International Journal of Scientific & Engineering Research, IJSER, Volume 3, Issue 8, August 2012
ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

Engineer (Quality) for some leading software

multinationals where he worked on projects for

companies like Pearson and Reader’s Digest. He

has received his Bachelors degree in Electronics

& Communication and Masters in

Nanotechnology from Faculty of Engineering

and Technology, Jamia Millia Islamia University,

New Delhi.

He is presently working as a Lecturer in

the Faculty of Electrical and Computer

Engineering, King Abdul Aziz University, Jeddah,

Saudi Arabia. His research interest includes

Software Engineering, Component Based

Software Engineering and Agent Based

Software Engineering.

Mr. Asif Irshad Khan received his Bachelor and

Master degree in Computer Science from the

Aligarh Muslim University (A.M.U), Aligarh,

India in 1998 and 2001 respectively. He is

presently working as a Lecturer Computer

Science at the Faculty of Computing and

Information Technology, King Abdul Aziz

University, Jeddah, Saudi Arabia.

 He has more than seven years

experience of teaching as lecturer to graduate

and undergraduate students in different

universities and worked for four years in

industry before joining academia full time.

 He has published more than 10

research papers in national and International

journals, and his research interest includes

Software Engineering, Component Based

Software Engineering and Agent Oriented

Software Engineering.

Mr. Noor-ul-Qayyum received his Master
degree in Information Technology from
National University of Sciences and Technology,
Islamabad, Pakistan in 2009. He had been
working for Ikonami Technologies and Decker
Intellectual Properties as a software engineer
before joining King Abdul Aziz University.

 He is currently working as a lecturer in
King Abdul Aziz University. He has industry
experience in SCORM based e-learning
courseware development using ADDIE model.
His research interest includes e-learning,
software watermarking, and mobile agent
security issues.

Mr. Abdullah Maresh Ali received his Master

degree in Computer Science from King Abdul

Aziz University, Jeddah, Saudi Arabia in 2011.

He is presently working as a Lecturer Computer

Science at the Faculty of Computing and

Information Technology, King Abdul Aziz

University, Jeddah, Saudi Arabia.

His research interest includes Computer

networks and Agent Oriented Software

Engineering.

